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No-Reference Quality Metric of Contrast-Distorted
Images Based on Information Maximization

Ke Gu, Weisi Lin, Guangtao Zhai, Xiaokang Yang, Wenjun Zhang, and Chang Wen Chen

Abstract—The general purpose of seeing a picture is to attain
information as much as possible. With it, we in this paper devise
a new no-reference/blind metric for image quality assessment
(IQA) of contrast distortion. For local details, we first roughly
remove predicted regions in an image since unpredicted remains
are of much information. We then compute entropy of particular
unpredicted areas of maximum information via visual saliency.
From global perspective, we compare the image histogram with
the uniformly distributed histogram of maximum information via
the symmetric K-L divergence. The proposed blind IQA method
generates an overall quality estimation of a contrast-distorted
image by properly combining local and global considerations.
Thorough experiments on five databases/subsets demonstrate the
superiority of our training-free blind technique over state-of-
the-art full- and no-reference IQA methods. Furthermore, the
proposed model is also applied to amend the performance of
general-purpose blind quality metrics to a sizable margin.

Index Terms—Image quality assessment, no-reference/blind,
contrast distortion, information maximization, saliency

I. INTRODUCTION

APICTURE is worth a thousand words. Currently, images
are playing an increasingly important role in recording

information, communicating thought and expressing emotion
in our daily lives. Facing huge amount of visual data being
created, stored, transmitted and consumed every moment, it
is impossible to monitor incessantly by manual labor. In such
condition, a real-time system towards accurately evaluating
and controlling visual data is eagerly required. This promotes
the development of objective image quality assessment (IQA)
metrics, which predict the visual quality using mathematical
models to simulate subjective opinion scores [1].

There are generally three types of objective IQA methods.
The first type is the so-called full-reference (FR) IQA. In
literature, the primary principle behind most FR-IQA models
is that the human visual system (HVS) is strongly sensitive to
the degradations in image structures [2-9]. The second type in
the IQA study is reduced-reference (RR) IQA, which supposes
partial information or few features extracted from the original
image are available [10-11]. The third type of objective
IQA methods are currently popular blind/no-reference (NR)
IQA models. A majority of this type of methods depend on
statistical regulations, e.g. [12-15].
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Lately, the IQA of contrast distortion has attracted broad
attentions [16-20], since this study can be used for image
contrast enhancement [21-22]. Nonetheless, a vast majority of
existing IQA models were found to not well correlate with the
human judgment of quality for contrast-altered images [20].
To cope with this task, the reduced-reference image quality
metric for contrast change (RIQMC) was devised based on
phase congruency and information statistics of the histogram,
acquiring superior performance beyond existing models and
managing to enhance original natural images [20].

Despite the successfulness of the RIQMC in the contrast-
distorted IQA and contrast enhancement, it inevitably needs
a single number, the phase congruency based entropy of the
original image, as the reduced reference, and is thus highly
limited to contrast enhancement for original natural images.
It is obvious that an IQA method with the ability to blindly
assess a wider scope of input images, such as underexposed
or overexposed images, is much more desirable. To this aim,
we are towards developing a new no-reference image quality
metric for contrast distortion (NIQMC) based on the concept
of information maximization.

In particular, the proposed NIQMC metric performs a local
and global manner. Given a visual signal, we first concentrate
on its local details. Generally speaking, high contrast images
communicate much information. An image signal contains a
great amount of unpredictable information which is of much
value, so we first remove predictable components from the
image and leave unpredictable remains. Then entropy of the
remains compared to that of the whole pixels of the input
image will better represent the amount of valid information.
We might also account for this viewpoint from the angle of
free energy based brain principle, as discussed in Section II.
Considering the fact that human eyes are attracted more by
the regions of greater amount of information, visual saliency
detection technique is also used to search for the optimal areas
which have maximum information, and compute the entropy
of the selected regions to be the local quality measure.

The second consideration for the given image comes from
the global perspective. Likewise, in terms of the information
maximization, it is reasonable to assume that the high-quality
image is of the histogram towards uniform distribution. We
in this research compare the symmetric Kullback-Leibler (K-
L) divergence between the input image histogram and the
uniformly distributed one to be the global quality measure.
Finally, we calculate the linearly weighted mean of the two
measures stated above, yielding the overall quality score of
the input contrast-distorted image.

The remainder of this paper is arranged below. In Section
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(a) Input image (b) AR model (c) Bilateral filtering (d) Semi-parametric model

Fig. 1: The sample image “buildings” and the associated filtered images with AR model, bilateral filtering and semi-parametric model.

(a) Input image (b) AR model (c) Bilateral filtering (d) Semi-parametric model

Fig. 2: The sample image “five hats” and the associated filtered images with AR model, bilateral filtering and semi-parametric model.

II, we present the devised blind NIQMC model in detail. In
Section III, a thorough comparison across our algorithm and a
large set of IQA methods is conducted on the contrast related
databases [16, 20, 23-25], and through trials the proposed
algorithm was found to improve general-purpose NR metrics.
We lastly conclude this paper in Section IV.

II. BLIND NIQMC METRIC

In most conditions, human beings can boost the efficiency
of information acquirement through particular mechanisms,
such as visual saliency, which was proven to have a close tie
with a neural circuit in the primate visual cortex [26]. On the
basis of the essential behavior of human beings for achieving
information as much as possible, this paper designs the blind
NIQMC metric via information maximization. In other words,
the main principle behind our NR-IQA model lies in that an
image with more valuable information has better quality. We
suppose that the HVS combines the local and global strategies
to perceive a visual signal, judging its quality score and salient
regions. Based on this, our blind NIQMC model attempts to
predict the visual quality of contrast-altered images.

A. Local Quality Measure

The first consideration of our approach is devoted to the
measurement of local details. In our common sense, an image
with large contrast represents much meaningful information.
Nevertheless, there is a great amount of residue information
contained in most images, such as large areas of blue sky or
green grassland in the background, which generally provide
little information. With this, we first discard the predictable
components from the image, which are estimated by using
a semi-parametric model based on the autoregressive (AR)
model and the bilateral filtering.

The AR model is simple and effective in simulating a broad
range of natural scenes by adjusting its parameters [27]. Its
parameters were shown to invariant to object transformations.

In this paper we leverage the AR model following the same
strategy used in [13]. The AR model is however oftentimes
not stable at image edges. We take an example to illustrate this
problem. As can be seen from Figs. 1(a)-(b), the text regions
have been heavily devastated by the AR model, ushering the
ringing artifacts. Akin results can be found at the buildings’
edges as well. So we further take advantage of the bilateral
filtering [28], which is a non-linear filtering with good edge-
preserving ability and easy to establish and calculate.

As illustrated in Fig. 1, in comparison to the input image,
one can see that the bilateral filtering is able to protect edges
better than the AR model, without introducing any ringing
artifact. Yet another example shown in Fig. 2 indicates that
the bilateral filtering falls in processing texture regions, which
leads to a great amount of spatial frequency reduction. On the
contrary, the AR model is applicable to texture synthesis and
thus preserves texture parts well. These two models are good
at processing smooth areas. So it is natural to combine the
merits of the AR model and the bilateral filtering, to acquire
better results on edge, texture and smooth regions. By this
guidance, we propose the semi-parametric model via a linear
fusion, deriving the estimation of predictable data (yp):

ypi =
Yk(yi)â + wYk(yi)b

1 + w
(1)

where â and b are separately estimated parameters using AR
model and bilateral filtering; Yk(yi) defines a vector consisting
of k member neighborhood of yi; w is assigned to be 4 for
emphasizing the strength of the edge-preserving effect that
comes from the bilateral filtering. We show the results based
on the semi-parametric model in Figs. 1-2(d). It is noted that
the adaptive weighting scheme should be better but may cause
much computational cost. Here we adopt constant weights in
(1) and the future work will be devoted to the exploration of
adaptive weighting strategy.

The filtered image can be treated as an approximation of
the predictable information, which can be explained from the
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angle of free energy principle [29]. To specify, the recently
revealed free energy based brain theory unifies some existing
brain theories in biological and physical sciences regarding
human action, perception, thinking and learning. The basic
premise is based on a supposition that the cognitive process
is governed by an internal generative model in human brain.
With this model, the human brain can separate an input image
into the orderly (predicted) and disorderly (unpredicted) parts1.
According to the analysis in [13], the authors have confirmed
that the internal generative model can be approximated with
the AR model. In comparison, by bringing about the bilateral
filtering, this paper develops a more reliable semi-parametric
model that has well performance at edge, texture and smooth
areas. We can use parameter vectors â and b to control the
internal generative model. Thus, the unpredictable component
is obtained by discarding the predictable data from the input
image:

yui = yi − ypi (2)

and then entropy of the error map yu is computed by

E(p) = −
∫
p(t) log p(t)dt (3)

where p(t) indicates the probability density of grayscale t.
In addition, there still exists an important problem about

the selection of suitable regions. This consideration is from
an ordinary problem. If you have seen the famous portrait
“Mona Lisa”, do you remember what the foreground is? For
the vast majority, an elegant lady with a mysterious smile will
emerge in their minds. But if you ask what the background
is, most people might remember nothing. That is, we human
beings will focus on some “significant” regions although we
have adequate time to see the whole image.

On the basis of information maximization, we assume that
human beings wish to select maximum-information areas to
be perceived. In order to maintain the semantic information,
we restrict the chosen areas not less than one fifth of the size
of the image. In our study, visual saliency has been used for
optimal areas selection, because on one hand salient regions
are generally what we easily remember, and on the other hand
the aforesaid semi-parametric model can be also managed to
detect visual saliency. It should be noted that visual saliency
is a different concept from what we apply in this work, and
instead it just provides several candidate regions which are
likely to be of maximum information.

More concretely, we take into account the lately developed
free energy inspired saliency detection technique (FES) [30].
The FES model performs at a small scale through resizing
an image to a coarse 63×47 pixel representation. In light of
the semi-parametric model similar to (1), the FES algorithm
estimates the error map and computes its local entropy map
in each color channel, and then combines three filtered and
normalized local entropy maps in different color channels to
produce the final saliency map.

In our NIQMC metric, we do not directly pick the salient
areas for weighting, akin to the strategy adopted in many IQA
approaches [2, 8, 31, 32, 33], because it has been presented

1Interested readers can be directed to [29] for more relevant information.

(a) (b)

Fig. 3: The trend of entropy values (E) with different percentages
(l%) on the two different types of images shown in Figs. 1-2.

above that the maximum-information region is required and
the saliency map is merely used for assistance. Considering
that if an image contains obvious foreground and background
it will have comparatively centralized salient regions (i.e. the
foreground) which communicate the valuable (unpredictable)
information, or else salient areas may be distributed dispers-
edly and thus the valuable (unpredictable) information will be
represented almost using the entire image.

As thus, after obtaining the saliency map, we sort all the
pixels in yp to form the vector ys according to the salient
importance. Next we calculate entropy values of the former
{l1, l2, ..., ln}% pixels in ys, denoted as {El1 , El2 , ..., Eln}.
Finding a good tradeoff between efficacy and efficiency, we
set {l1, l2, l3, l4, l5} as {20, 40, 60, 80, 100} in this work. We
indicate how the optimal areas selection works in Fig. 3. As
we can see, the “five hats” image has definite foreground (i.e.
five hats) and background, and in such condition the most
20% salient pixels are generally considered as the maximum-
information region. In contrast, the “buildings” image cannot
be divided into the foreground and background clearly, or in
other words, its foreground (i.e. six buildings) nearly occupies
the entire image, and thereby we think of the majority of the
most 80% salient pixels to be the maximum-information area.
Finally, we define the local quality measure by

QL = max{El1 , El2 , ..., El5}. (4)

B. Global Quality Measure

The second consideration of our approach comes from the
perspective of global information measure. A chief concept
related to the image contrast is entropy, which ignores the
influence of pixels’ locations but rather merely considers the
distribution of pixel values. More precisely, entropy supposes
that the uniformly distributed histogram u corresponds to the
maximum information, and thus an image whose histogram
h is alike to u has the large global information. That is to
say, the smaller difference between E(u) and E(h), namely
∆E = E(u)− E(h) =

∫
u(t) log u(t)− h(t) log h(t)dt ≥ 0,

the higher contrast the image has. Whereas, we notice that
this metric overlooks the interaction between u and h. So the
advanced K-L divergence, one of the most typical distance
comparing two probability distributions in information theory,
is exploited. Given two probability densities h0 and h1, the
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K-L divergence is defined as

DKL(h1‖h0) = −
∫
h1(t) log h0(t)dt+

∫
h1(t) log h1(t)dt

= H(h1,h0)− E(h1) (5)

where H(h1,h0) is the cross entropy of h1 and h0. Via the
usage of the K-L divergence, the interaction between h1 and
h0 has been included.

The K-L distance is however non-symmetric and easy to
cause some troubles in real applications. In [34], the authors
present simple examples to illustrate that the ordering of the
arguments in the K-L divergence might produce substantially
different results. We accordingly resort to the symmetric K-L
divergence. So far, many symmetric forms have been devised
[34], e.g. arithmetical mean, geometric mean, and harmonic
mean. Apart from the three functions stated above, there still
exists a symmetrized and smoothed format, dubbed as the
Jensen-Shannon (J-S) divergence:

DJS(h0,h1) =
DKL(h0‖h∆) +DKL(h1‖h∆)

2
(6)

where h∆ = 1
2 (h0 + h1).

It was observed by tests that, as opposed to the symmetric
forms based on arithmetical, geometric and harmonic means,
the use of the J-S divergence and 128-bin histogram results in
around 2% performance gain. Therefore, given the histogram
h and u of pixel values, the global quality measure is defined
by

QG = DJS(h,u). (7)

Notice that the developed local and global quality measures
have reversed meanings; that is, the higher local QL (or the
smaller global QG) indicates that the image has the greater
contrast and better quality.

C. Combined Quality Measure

According to the concept of information maximization,
we have proposed two quality measures. By the predictable
data removal and the optimal region selection, the former
one quantifies the valuable information from the aspect of
local details. Enlightened from the underlying concept of the
practical HE technique, the latter part in our blind NIQMC
metric uses the symmetrized and smoothed J-S divergence to
measure whether the input histogram is properly distributed
compared to the uniform distribution. From the viewpoint of
working, the two parts above play complementary roles. As
thus, they are integrated to approximate the HVS perception
to the visual quality of contrast-altered images. Since these
two measures are of the same dimension (i.e. entropy), we
can straightforwardly combine them together. The NIQMC is
therefore defined as a simple linear fusion of the two quality
measures:

NIQMC =
QL + γQG

1 + γ
(8)

where γ is a constant weight that is used for controlling the
relative significance between the local and global strategies. In
this study, we set γ as −2.2 by making the proposed NIQMC
metric have the best correlation performance measure on the

Fig. 4: The basic framework of our blind NIQMC metric.

TID2013 database. Also, it is easy to find that the semi-
parametric model does not work efficiently due to the use
of pixel-wise AR model. So this paper adopts the sampling
method for decreasing the implementation time [35]; that is,
the semi-parametric model are computed once every m pixels
in both horizontal and vertical directions. Here we let m = 7,
because it was found by tests that this choice degrades the
performance to a small extent but rather largely reduces the
computational complexity of the proposed NIQMC metric.

Finally, we illustrate the basic framework of the proposed
blind NIQMC approach in Fig. 4, in order for helping readers
to effortlessly understand how to deploy the metric. Given
an image signal, we first compute its global quality measure
through using the symmetric and smoothed J-S divergence.
Subsequently, using the semi-parametric model to process
the image at the original and small scales respectively, we
conduct the optimal region selection to predict the local
quality measure. The NIQMC score is lastly derived via
the combination of the global and local estimations. The
implementation code will be available to the public soon at
https://sites.google.com/site/guke198701/publications.

III. EXPERIMENTAL RESULTS

In this section, we validate our training-free blind NIQMC
model and compare with a large body of classical and state-
of-the-art IQA algorithms. FR-IQA metrics involve state-of-
the-art FSIM [2], IGM [5], LTG [7] and VSI [8]. NR-IQA
methods are made up of prevailing BRISQUE [12], NFERM
[13] and IL-NIQE [14]. To the best of our knowledge, there
exist five databases (CID2013, CCID2014, CSIQ, TID2008
and TID2013) concerning image contrast, which were chosen
as the testing bed in this work.

The performance of an IQA method is typically evaluated
from two aspects from the angle of prediction power [36],
namely prediction accuracy and prediction monotonicity. The
computation of the correlation performance usually needs a
five-parameter regression procedure to remove the nonlinearity
of predicted scores. Thereafter, we calculate three performance
indices [36], including the Spearman rank order correlation
coefficient (SRCC) and the Kendall’s rank order correlation
coefficient (KRCC) for evaluating the prediction monotonicity,
and the Pearson linear correlation coefficient (PLCC) for the
prediction accuracy. Note that a value close to one for PLCC,
SRCC and KRCC represents the superior correlation in line
with subjective human ratings.
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TABLE I: Performance indices on contrast related datasets and average results. We bold the top two models.

Quality Metrics Type CID2013 (400 images) [16] CCID2014 (655 images) [20] CSIQ (116 images) [23]
PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC

FSIM [2] FR 0.8574 0.8486 0.6663 0.8201 0.7658 0.5707 0.9378 0.9420 0.7883
IGM [5] FR 0.8467 0.8246 0.6470 0.7992 0.7246 0.5356 0.9492 0.9547 0.8174
LTG [7] FR 0.8656 0.8605 0.6723 0.8384 0.7901 0.5938 0.9560 0.9414 0.7880
VSI [8] FR 0.8571 0.8506 0.6579 0.8209 0.7734 0.5736 0.9532 0.9504 0.8096
BRISQUE [12] NR 0.3351 0.2552 0.1745 0.3575 0.2123 0.1445 0.1471 0.0473 0.0365
NFERM [13] NR 0.4074 0.3497 0.2385 0.4181 0.3616 0.2470 0.4831 0.3742 0.2667
IL-NIQE [14] NR 0.5682 0.5273 0.3708 0.5764 0.5121 0.3590 0.5468 0.5005 0.3510
NIQMC (Pro.) NR 0.8691 0.8668 0.6690 0.8438 0.8113 0.6052 0.8747 0.8533 0.6689

Quality Metrics Type TID2008 (200 images) [24] TID2013 (250 images) [25] Average (1621 images)
PLCC SRCC KRCC PLCC SRCC KRCC PLCC SRCC KRCC

FSIM [2] FR 0.6880 0.4403 0.3348 0.6819 0.4413 0.3588 0.8001 0.7086 0.5481
IGM [5] FR 0.6950 0.3630 0.2690 0.6891 0.3717 0.2935 0.7918 0.6667 0.5130
LTG [7] FR 0.6795 0.4655 0.3285 0.6749 0.4639 0.3458 0.8087 0.7279 0.5561
VSI [8] FR 0.6819 0.4571 0.3450 0.6785 0.4643 0.3705 0.8002 0.7184 0.5518
BRISQUE [12] NR 0.0786 0.1181 0.0787 0.1429 0.0551 0.0359 0.2694 0.1752 0.1193
NFERM [13] NR 0.2705 0.2162 0.1472 0.2423 0.1956 0.1320 0.3748 0.3160 0.2163
IL-NIQE [14] NR 0.2244 0.1833 0.1223 0.2275 0.1517 0.1030 0.4750 0.4189 0.2927
NIQMC (Pro.) NR 0.7767 0.7324 0.5419 0.7225 0.6458 0.4687 0.8253 0.7927 0.5967

As given in Table I, we list the performance results of our
blind NIQMC technique and seven computing IQA methods.
Image contrast distortion is quite difficult to evaluate even
though state-of-the-art FR-IQA approaches can resort to the
help of the whole original image [20]. Despite this, in the
recently constructed CID2013 and CCID2014 databases that
are dedicated to the distortion type of contrast adjustment,
the NIQMC has attained encouraging results, beyond 0.8 in
accordance with SRCC2. Compared with other metrics, one
can see that our approach is clearly superior to all the blind
quality metrics and the majority of FR-IQA models that are
usually hard to be matched by blind IQA algorithms because
of the use of the overall original image, and moreover, it is
even on par with the lately designed FR LTG method.

As for the CSIQ database, it can be easily found that the
blind NIQMC model outperforms all the NR-IQA algorithms
included in this paper, but is somewhat inferior to the state-
of-the-art FR quality metrics. From the results of correlation
performance on the TID2008 and TID2013 databases, our
NIQMC approach performs better than the FR- and NR-IQA
models considered.

A comprehensive comparison of each competing quality
metric is further conducted via the weighted average referring
to the number of images in each database. We illustrate the
associated results in Table I as well. Apparently, the NIQMC
has constantly achieved the optimal prediction monotonicity
(using SRCC and KRCC) and prediction accuracy (using
PLCC), higher than the second-place LTG method to a large
extent, about 9% in terms of the important index SRCC.

A good IQA metric should be simultaneously of efficiency
and efficacy. We therefore compute the mean implementation
time of all the 655 contrast-adjusted images with the size of
512 × 768. The working platform uses the MATLAB2010a
on a computer with Intel i7-2600 processor at 3.40GHz and
4GB memory. Table II tabulates the average computational

2One important application of IQA methods is to tell which one has the
better (or best) quality across two (or many) pictures. SRCC measuring the
prediction monotonicity exactly illustrates this, and thus it is usually treated
as one of the most important indices in the IQA [2, 7, 20, 35].

TABLE II: Average computational time on the CCID2014 database.

Metrics FSIM IGM LTG VSI
Time (second/image) 0.6746 18.326 0.0452 0.2106

Metrics BRISQUE NFERM IL-NIQE NIQMC
Time (second/image) 0.2760 41.832 3.0638 2.9001

TABLE III: The number and ratio of image pairs in accordance with
subjective human ratings in each IQA method. We highlight the best
two performed metrics with boldface.

Quality Metrics Group 1 Group 2
Pairs Ratio Pairs Ratio

FSIM [2] 11,232 80.05% 563 87.97%
IGM [5] 10,946 78.01% 564 88.12%
LTG [7] 11,382 81.11% 570 89.06%
VSI [8] 11,319 80.67% 561 87.66%
BRISQUE [12] 6075 43.29% 165 25.78%
NFERM [13] 8198 58.42% 499 77.97%
IL-NIQE [14] 3843 27.39% 71 11.09%
NIQMC (Pro.) 11,670 83.17% 578 90.31%

cost of each testing quality metric. With a series computing,
the devised NR NIQMC model takes less than three seconds
to assess a 512× 768 color image. Considering that the local
and global quality measures are independent of each other,
and the computation for each image pixel is also independent
in the AR model or the bilateral filtering, we are very likely to
conduct the parallel computing to reduce the implementation
time to a large extent in the practical application.

An important role of IQA methods is to judge which one
is better between two images, especially one distorted image
and its original counterpart. Therefore, a relevant experiment
is carried out on the CCID2014 database. In this database,
there are totally 14,032 image pairs, each of which associates
to the same source image. For each metric, we tabulate the
number of image pairs (and the ratio) whose orders are the
same with those of subjective MOS values, as provided in
“Group 1” of Table III. One can see that the proposed blind
NIQMC metric has achieved the optimal result, far beyond
state-of-the-art NR-IQA algorithms. Moreover, we also carry
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TABLE IV: Sensitivity test (SRCC) of the parameter γ in (8).
PPPPPPDataset

γ -2 -2.1 -2.2 -2.3 -2.4

CID2013 0.8662 0.8667 0.8668 0.8672 0.8673
CCID2014 0.8106 0.8110 0.8113 0.8117 0.8118

CSIQ 0.8520 0.8519 0.8533 0.8525 0.8510
TID2008 0.7328 0.7325 0.7325 0.7309 0.7305
TID2013 0.6453 0.6453 0.6458 0.6443 0.6443

TABLE V: Performance on TID2013 and cross-validation on LIVE,
CSIQ and LIVEMD databases. We bold the best performed one.

Quality Metrics Number of TID2013 (3000 images) [25]
Features PLCC SRCC KRCC

BRISQUE [12] 36 0.5481 0.5287 0.3741
NFERM [13] 23 0.6808 0.6233 0.4516
NFERM-II (Pro.) 24 0.6915 0.6298 0.4578

Quality Metrics Number of SRCC
Features LIVE CSIQ LIVEMD

BRISQUE [12] 36 0.5567 0.4083 0.1930
NFERM [13] 23 0.7960 0.5643 0.1885
NFERM-II (Pro.) 24 0.8062 0.6279 0.1947

out a similar experiment about a distorted image compared
to its original version. In such condition, 640 image pairs are
included. From “Group 2” of Table III, we are able to derive
the same conclusion validating the superiority of our blind
NIQMC method.

The sensitivity of parameter γ in (8) is also compared. We
enumerate a small range of values around the chosen value
and compute the corresponding performance indices on five
testing image databases, as reported in Table IV. One can see
that the parameter γ is of good immunity and robustness to
the changing of values. The proposed blind NIQMC algorithm
is made up of two components, namely the local quality
measure and the global one, and thus the contribution of each
component deserves a quantified performance comparison.
Results show that both two components provide significant
contributions, but the their combination, NIQMC, has attained
the optimal performance among the three.

Apart from predicting the visual quality of contrast-altered
images, the proposed NIQMC approach is also applicable to
another important application, advancing the performance of
general-purpose NR-IQA measures. We in this paper choose
to improve the state-of-the-art NFERM metric [13] with the
NIQMC model, since on one hand this metric is of high per-
formance and few features compared with other blind quality
measures, and on the other hand this metric and the NIQMC
have several components in common, e.g. preprocessing the
distorted image via the AR model, and we might elaborately
combine them together with only a few components.

We improve the NFERM metric through introducing the
NIQMC score as a new feature, generating the NFERM-II with
24 features. The popular and state-of-the-art BRISQUE and
NFERM are also included for comparison. On the TID2013
database, we randomly separate the overall 3,000 images into
two groups. The first group consists of 2,400 images associated
to 80% reference images, and the second group are composed
of 600 images associated to the rest 20% reference images.

To make sure that the IQA metrics are robust across image
contents and not biased by the particular train-test split, this
random 80% train - 20% test procedure is repeated with 1000
times. We report the median result of the 1,000 performance
indices in Table V. It is easy to observe that introducing the
new feature bring a remarkable improvement on the original
NFERM metric, and moreover, it has delivered the optimal
performance among the three.

A cross-validation is further conducted using the TID2013
database for training and using popular LIVE [37], CSIQ [23]
and LIVEMD [38] databases for testing. According to the
results, two main conclusions can be drawn. Firstly, the new
feature, namely the NIQMC index, is proved once more of
good ability to improve the NFERM metric with only one
feature introduced. Secondly, despite the performance gain,
the changes on LIVE and LIVEMD databases are quite small,
which is possibly because no contrast-related distortions are
included in these two databases. In addition, it can be also
found that the correlation performance is not high, especially
in the LIVEMD database. The problem, in my point of view,
might be caused by the insufficiency of training samples. That
is to say, the usage of only 24 image scenes in the TID2013
database for learning is easily leading to under-fitting and
biased the results on other image scenes. To compensate for
this deficiency, a collection of more than 1,000 various scenes
will reduce this bias and provide a good-fitting.

IV. CONCLUSION

In this paper, we have investigated the problem of visual
quality assessment of contrast-distorted images. Three main
contributions have been made in this research. First, we have
proposed a training-free blind quality method based on the
concept of information maximization, which is much better
than the classical FR-IQA models and lately devised NR-IQA
metrics and equivalent to the state-of-the-art FR approaches.
Second, compared with the majority of existing IQA models,
our blind NIQMC technique can accurately judge which has
larger contrast and better quality between two images. Third,
the score of our NIQMC metric can be treated as an effective
feature for improving the performance of the general-purpose
blind NFERM method to a wide margin, even outperforming
existing dominant and recently proposed general-purpose no-
reference quality measures.

There might still be some room for improvement in perfor-
mance. In the future work we will further study the IQA of
contrast change from four aspects. The first one is to devise
a nonlinear strategy to adaptively weight the local quality
measure and the global one. Due to the fact that our NIQMC
and the general-purpose NFERM are individually developed,
the direct combination of them used in this paper cannot be
the best way, and thus the second work is towards devising a
more reasonable fusion manner. The third work is to consider
the influence of the display devises on which the images are
scored, because the gamma function could largely affect the
image quality with different transfer curves. The last one is
to better insert the important chromatic component into our
blind NIQMC metric, akin to recent LTG and IL-NIQE.
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